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Free and forced convection from fine hot wires 
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Department of Mathematics, Melbourne University 

(Received 4 July 1969 and in revised form 17 July 1972) 

The incipient effect of buoyancy on the heat loss from a fine hot wire in two-dimen- 
sional steady incompressible flow is considered. The wire is taken to be horizontal, 
the mainstream is taken to be normal to the wire and to be directed upwards at 
an acute angle a to the vertical, and the product NB = NG/R3 is assumed to be 
small, where N ,  G and R denote respectively the Nusselt, Grashof and Reynolds 
numbers (defined, in the usual way, in $02 and 3). Three parts of the flow are 
distinguished and discussed in turn. These are (i) the wire’s thermal wake, (ii) an 
outer irrotational flow induced as a small perturbation of the mainstream by the 
thermal wake, and (iii) an inner flow, near the wire, in which diffusion either domi- 
nates or balances convection. It is shown that the change caused by buoyancy 
in the wire’s heat loss is due largely to the irrotational flow induced by the wire’s 
thermal wake. When log N E  is significantly large, the change caused by buoyancy 
in the wire’s heat loss is almost entirely due to the irrotational flow. The increment 
caused by buoyancy in the Nusselt number is then approximately the same as 
would be produced, in the absence of buoyancy, if the mainstream speed were 
increased by a factor 1 - 2a-1 NE log (NE) cos a, where r . ~  is the Prandtl number. 

1. Introduction 
One aspect of hot-wire anemometry is that the cooling of the hot wire may be 

affected by the buoyancy that it produces in the passing fluid. Normally, the 
ambient current is so fast that the buoyancy effect is negligible. But, in slow cur- 
rents, this may not be so, and inconvenient complications then intrude. For 
example, the wire’s heat loss in mixed (i.e. partly forced and partly natural) con- 
vection depends on the angle of the wire to the vertical. Also, the heat loss by a 
horizontal wire in a horizontal stream in mixed convection does not depend 
monotonically on the stream speed (Collis & Williams 1959), so that a given heat 
loss may represent either one of two distinct stream speeds. 

For slow currents, then, it is desirable to know fairly precisely when buoyancy 
can be ignored. We shall consider the case in which the Reynolds number R is 
not large compared with unity. An inspection of magnitudes indicates that, in 
this case, the effect of buoyancy on the heat transfer is small if R is much greater 
than G) ,  where C is the Grashof number. This criterion has been confirmed ex- 
perimentally for air (Collis & Williams 1959), but apparently it needs modifica- 
tion for fluids with large Prandtl numbers (Gebhart & Pera 1971). In  air, the 
condition R = G )  is achieved by typical hot-wire anemometers in slow draughts 
with speeds of a few cm s-l. 

27-2 
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The aim here is to elucidate the incipient effect of buoyancy on the heat trans- 
fer from a wire when e = GlIR is small. For simplicity, the flow is assumed to be 
steady and two-dimensional and the Prandtl number is assumed to be of O( 1). 
The wire is taken to  be horizontal, and normal to the incident stream, and the 
incident stream is taken to be directed upward a t  an angle a to the vertical. 

To treat the related problem of a hot sphere in a vertical updraught, Hieber & 
Gebhart (1969) took the Reynolds number to be small and used Oseen’s approxi- 
mation. For the sphere, the buoyancy causes changes in the velocity which are 
small relative to the mainstream velocity provided that G is small enough. Conse- 
quently, Oseen’s approximation is uniformly valid. The case of the hot wire, 
however, is crucially different. As we shall see, the velocity in the (ideal, steady) 
wake of a hot wire is infinite at infinite distance from the wire, however small G 
may be. At some distance from the wire, the change caused by the buoyancy in 
the velocity in the wake becomes of the same order as the mainstream velocity 
uz. At this stage, even though the Reynolds number may be small, Oseen’s 
approximation is invalid. 

The present treatment centres on the role of the wake. The feebler the buoy- 
ancy, the further the buoyant fluid must rise before acquiring a given increase in 
speed. Thus, for e < 1, the length scale for the growth of the wake is large. The 
flow in the wake, therefore, is largely decoupled from the flow near the wire. 

Outside the wake there is a small irrotational flow, induced partly by the inflow 
at the wake’s outer edges and partly by the pressure difference across the wake 
which is caused by the buoyancy when the wake is inclined to the vertical. 
The secondary irrotational flow has the same length scale as the wake and so it 
also is largely decoupled from the flow near the wire. Surprisingly, perhaps, it 
turns out that the angle between the wake and the mainstream is always small. 
The reason for this devolves on the pressure differences across the wake. To the 
irrotational flow, the wake behaves like a vortex sheet. A wake that veered up- 
wards more sharply would imply an irrotational flow in which these pressure 
differences were larger than is consistent with the forces and accelerations in the 
wake. 

The relative straightness of the inclined wake and the decoupling of the wake 
and irrotational flow from the flow near the wire are useful simplifications. They 
permit the wake to  be calculated by the usual shear-layer approximations, with 
the external velocity taken to  be that of the mainstream and the wake’s width 
taken to be zero at its base. The only other external factor on which the flow 
in the wake then depends is the wire’s net rate of loss of heat. For the purpose of 
calculating the wake to  a f i s t  approximation, the wire’s rate of loss of heat may be 
taken to  be the same as in purely forced convection. The irrotational flow may 
then be readily deduced by treating the wake as a distribution of sinks and vor- 
tices along a half line. Moreover, the secondary irrotational flow proves to  be 
responsible for the major part of the change that is caused by buoyancy in the heat 
lost by the wire. This leads to  the main quantitative result of the paper, which is 
that  the change caused by buoyancy in the heat lost by the wire is to a first ap- 
proximation the same as would be caused in the absence of buoyancy by a certain 
specified change in the mainstream velocity (see (5.17)). 
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The approximations used here do not involve a detailed knowledge of the flow 
near the wire. In  particular, an analytic solution for the flow about the wire in 
the absence of buoyancy is not required. For this reason the Reynolds number 
does not need to be restricted to be small; and it is restricted only in so far as the 
flow has been supposed to be steady. The limiting factor here is the stability of 
the wake, as is noted in $6.  The sectional shape of the wire is also largely im- 
material to the argument, though it has in fact been taken to be circular. Certain 
difficulties, which so far are unresolved, arise when the incident stream is nearly 
horizontal or is slanted downwards. Accordingly, these situations have been 
excluded. 

The plan of the paper is as follows. The wake, the irrotational flow and the 
diffusive zone round the cylinder are considered in turn in $3 3-5. In  retrospect, 
the main quantitative result can be extracted by elementary arguments, con- 
cerned largely with orders of magnitude, and this is done in § 6 .  

2. Formulation 
We consider the steady two-dimensional flow of an infinite stream of incompres- 

sible fluid past a horizontal circular cylinder of diameter d.  The incident stream is 
uniform and has velocity u, and temperature Tw and the cylinder's surface has 
a uniform temperature Tw, which is greater than T,. Heating by viscous dissipa- 
tion is neglected and the temperature T, + B(T, - Tw) at a general point is assumed 
to vary so slightly that the kinematic viscosity v, thermal diffusivity K and 
thermal coefficient of expansion p are each effectively constant throughout the 
fluid. 

Boussinesq's approximation then applies, and we may write the flux equa- 
tions in non-dimensional form as 

u.vu = -Vp-E&+v2U7 
UU . ve = vv, 

v .u = 0. 

Here, u denotes the non-dimensional velocity, p de:otes the non-dimensional 
change in the pressure from the ambient pressure, g is a unit vector directed 
vertically downward, u = v / K  is the Prandtl number and 

= ~ 1 ~ 3 ,  (2.2) 

where 

The scales that have been adopted to render the lengths, velocities and pressure 
differences non-dimensional are v/uz ,  uz and pwu:2 respectively, p, being the 
ambient density. 

The parameter e provides a measure of the buoyancy, and the basis of the sub- 
sequent approximation is that E is small. As an indication of actual magnitudes, 
it might be noted that E N 5/uZ3 for air when T, = 20 "C, T, - Tw = 10 "C and uz 
is in cm s-1. Of the remaining parameters, u will be taken to be of O( 1)  and R 
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FIGURE 1. The primary zones of the flow: (i) the diffusive zone, where p = O(l ) ,  
(ii) the wake, (iii) the irrotational flow, where p = O((Ns)-*) .  

must be less than 44 so that a t  least the motion is stable in the absence of buoy- 
ancy. The question of the instability of the wake is deferred to $6. 

As the starting point for our analysis, we shall presume the existence of the 
following zones: 

(i) a diffusive zone, at distances of O(u/uz) from the cylinder, in which dif- 
fusion either dominates or balances convection; 

(ii) a wake, at distances from the cylinder much larger than u/uz, in which 
diffusion balances convection and whose width is much smaller than the radius 
of curvature of any of its streamlines; and 

(iii) an  irrotational zone, outside both (i) and (ii), in which the vorticity and 
the temperature difference 6 are negligibly small (see figure 1). The wake will 
also be presumed to convey almost all the heat lost by the cylinder. 

We may surmise immediately, from (2.1), that the velocity increment caused 
bythebuoyancyforces of the diffusive zone is small, of O(E).  What is not, perhaps, 
immediately obvious is that velocity increments of larger order can be generated 
by an irrotational Aow induced by the wake. Since the wake and the irrotational 
zone are crucial, we shall consider these two first. To this end, we shall use non- 
dimensional Cartesian co-ordinates Oxy, scaled to uIu2, with Ox in the direction 
of u:, Oy inclined upwards (when not horizontal) and the origin 0 on the cylin- 
der's axis. The corresponding components of u will be denoted by (u, v) and the 
corresponding cylindrical polar co-ordinates will be denoted by (p,  $). 



3. The wake 

Free and forced convection from jine hot wires 

3.1. u, vertically upwards 
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The simplest situation occurs when the non-dimensional mainstream velocity 
u, = ft is vertically upward. The wake is then symmetrical about Ox; and, from 
the outset, we can plausibly assume that the velocity outside the wake differs 
only slightly from u,. 

The wake first forms several viscous lengths (v/u:) downstream of the cylinder. 
For E < 1, the buoyancy forces are relatively small everywhere and can cause 
increases of O(1) in the velocity u only a t  large distances from the cylinder. 
So, at  the beginning of the wake, and for some distance thereafter, u is approxi- 
mately equal to 8. Thus, at  the beginning of the wake, we have to a first approxi- 
mation, 

- = €e+- au 
ax a2u ay2 ' 1 

In keeping with the notion of a wake, we shall suppose that the temperature 
difference 8 and the velocity difference (u - 1) ft are much less at the outer edges 
of the wake than inside the wake. Then (3.1) yields for the temperature and the 
vertical velocity in the wake 

(3.2) I 0 = ivx-4eo(y), 

u = 1 - cx-4f (y) + NEx+g;(y), 

where 

The Nusselt number N is here defined as 

(3.3) 

the temperature gradient ae/ap being evaluated at the cylinder, where p = BR. 
The constant C in (3.2) is independent of E and, as in the absence of buoyancy, 

C = R(drag on the cylinder)/(p,uz2d). (3.5) 

The solution (3.2) shows the vertical velocity to increase like N E X ~ .  The assertion 
that u 2: ft is therefore tenable in the wake only for 1 < x < ( N E ) - ~ .  

As soon as xis of O ( ( N E ) - ~ ) ,  and thereafter, the increase in the vertical velocity 
due to the buoyancy may be of O( I), so that the linear equations (3.1) no longer 
apply. The flux equations then appropriate are 

v.u = 0. I 
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Hence the velocity and the temperature may be determined to  O(l ) ,  provided 
that X = ( N c ) ~ x  is small enough, by 

m 

u = 1 +  C X-$mgk(y ) ,  
m = l  I 

(3.7) I m 

m= 1 
v = 92-3 C X t m  [rgk(7) - (m + 1 )  gm(?)I> 

m 

e = NX-+ x x+mem(7). 
m=O 

The profile functions gl(r) and 19,(7) are given by (3.3) with the added proviso 
that gl(0) = 0. The remaining profile functions gm(7)  and @,(r) satisfy the dif- 
ferential equations 

(3.8) I 29: + 79; - mgh = Gm-l (7 ) 
m- 1 

r = l  
= -28m-1+ C [rg:.gk-r-(r+l)grgm-,I (m B 21, 

20-18; +yo:, - (m - 1)  0, = @m-l(T/) 

with the boundary conditions 

and these equations admit the unique solutions 

which define gk and Om iteratively and are well behaved for large 7, giving in fact 

g' m -  - O(7m-3e-6uf-), 8, = O(7me-iuvz) for 7 $ 1 and r < 1. (3.12) 

For large X the series in (3.7) may cease to be sufficiently accurate, but it 
suffices for the purpose in hand to note that their basic form, 

u = u ( X ,  r ) ,  v = N E V ( X ,  r ) ,  0 = N d 7 ( X ,  Y/), (3.13) 
will be preserved in any further possible continuation of the solution to larger X ,  
as is readily apparent on rescaling the wake equations (3.6). 

When X is very large (i.e. for x B ( N C ) - ~ ) ,  there exists an asymptotic solution 

(3.14) 
u = Xf&'(x), w = +NCX-*(SZ&'- 3&), 

B = ~2~x-2 r(q, 
where 2 = N q X - % (  = Xi%y). 
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The profile functions Q and I’ in (3.14) are defined by the following differential 
equations and boundary conditions, 

(3.15) 

(3.16) 

to  ensure that the heat flux from the cylinder equals that across the wake. Both 
Q and r have been evaluated numerically (Yih 1953). 

I n  all, then, the length scale for the action of buoyancy in the vertical wake is 
( N E ) - ~ ;  and the velocity difference u - 2  is o(1) for 1 < 17: < ( N E ) - ~ ,  grows to 
O( 1) where 2 = O ( ( N E ) - ~ )  and becomes large like X i  for 17: 9 ( N E ) - ~ .  These stages 
of the wake’s growth will be dubbed, for convenience, the initial, intermediate 
and asymptotic stages, respectively. 

As the fluid in the wake gathers speed i t  draws in fluid from outside. On this 
score, we note, for future reference, that  the transverse component of the velocity 
at the edges of the wake may be written as 

I ZJ+ = N c V ( X , W )  = N € F ( X ) ,  

V-  = N E V ( X ,  -a) = - N E F ( X ) ,  
(3.17) 

where F is, at most, of O( 1). For X < 1, F ( X )  may be represented as a series in 
powers of 5 3  and, from (3.1)) (3.2) and (3.7)) 

(3.18) 

whilst for X + 1, F = O(X-3). 

3.2. u, slanted upwurds 
We now take the incident velocity t o  be slanted upwards a t  an angle a, where 
0 < a < in, to  the vertical. I n  this case, the location of the wake is not a priori 
known. However, as we shall see, the pressure must be approximately constant 
across the wake and this implies that the wake is, in fact, to a first approximation 
in line with the incident velocity. 

Since the wake is thin relative to the radius of curvature of its streamlines, the 
wake flow is governed approximately by 

ae ae 1 a2e 

as an vanz’ 
us-+un- = -- 

au, axn -+- = 0) 
as an J 

(3.19) 
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where a' denotes the inclination to the vertical of a reference streamline I ,  
chosen arbitrarily from the streamlines of the wake, and s, n denote orthogonal 
co-ordinates, s being distance along the reference streamline 1 from some arbitrary 
point in the diffusive zone and n being distance from 1 measured along the up- 
wardly sloping normals to 1 .  The change in pressure across the entire width of the 
wake, - h 6 n 6 h, say, is therefore 

(3.20) 

I ,  

- h  
The integral 1 8dy represents the pressure change associated directly witth the 

buoyancy of the fluid in the wake. Because the wake conveys nearly all the heat 
lost by the cylinder, we know that 

(3 .21)  

We can safely presume that, as for the vertical wake, the streamwise component 
us of the velocity is of O( l),  or is larger, and that u, and 8 are positive. So, (3 .21)  
implies that 

h f -h 8 d n = O ( N ) ,  (3 .22)  

at most. In  other words, the contribution to the pressure change across the 
wake that is associated directly with the buoyancy of the fluid in the wake is 
at most of O ( N e )  = o( 1 ) .  The pressure change across the wake also includes the 
usual contribution associated with the wake's curvature. When us is of O( 11, this 
contribution is plainly small, because of the wake's relative thinness. However, 
us may become large through the action of buoyancy, as happens in the vertical 
wake. In  this event, since buoyancy is the primary cause of the acceleration in 
the wake, we can expect that 

(3.23) 

so that the pressure change associated with the wake's curvature, which is given 
bv 

(3 .24)  

is again small provided that s(da'/ds) is at  most of O(1). The total change in 
pressure across the wake is thus of o( 1). 

In  order to see what this implies for the irrotational flow outside the wake, 
we may think of the wake as a vortex sheet and of the diffusive zone as a point 
singularity. The fact that the pressure change across the wake is small means that, 
correct to O( l ) ,  there is no discontinuity in pressure across the vortex sheet. 
The complex velocity potential for the irrotational flow, correct to O( l ) ,  is there- 
fore regular everywhere, save at  most at  one point. In  addition, the irrotational 
velocity can be expected to be finite. Hence, correct to O ( l ) ,  the irrotational 
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velocity must be constant and, as foreshadowed, the wake must be in line with the 
incident velocity (i.e. a ’ 21 a). 

The flux equations for the slanted wake may now be written as 

au, au, -+- = 0. 
as an J 

(3.25) 

As for the vertical wake, we suppose that us - 1 and 8 are much L2ss at t.,e outer 
edges of the wake than they are inside the wake. The streamline 1 enters into the 
equations (3.25) and their boundary conditions only in so far as it is the base-line 
for the co-ordinates (s, n). So to different choices of 1 there correspond solutions 
with different spatial distributions of velocity. This non-uniqueness may be seen 
another way. If we introduce a stream function defined by 

n 

0 
l+h = J- usds 

and re-write the flux equations, with s and I# as variables, in the form 

(3.26) 

(3.27) 

then it is clear that, if us = I ( s ,  I#), 8 = J(s ,  l+h) (3.28) 

defines a solution then so also does 

us = I (s ,  I# - $I)), 8 = J ( s ,  11. - $OL (3.29) 

where +o is a constant. Apart from this arbitrariness in the reference streamline, 
however, the flux equations (3.25) and their boundary conditions correspond 
precisely with the equations and boundary conditions for the vertical wake. 
Thus, the solutions for the slanted wake may be obtained from those for the 
vertical wake by putting E cos a in place of E ,  and s, n, us and U, respectively in 
place of x, y, u and 21. The reference streamline is thereby selected to be the central 
streamline, relative to which the temperature and streamwise component of 
velocity are even functions of n. The precise location of this streamline remains to 
be determined. 

Like the vertical wake, the slanted wake grows through a linear stage, where 
1 < s < (Ne c o ~ a ) - ~  andu cli u,, anintermediatestage, wheres = O((Ne  cos a)-2) 

and u - u, = O( I), and an asymptotic stage, where s B ( N E  cos and 11.11 > 1. 
Also, as before, the slanted wake draws fluid from outside, and the transverse 
component of velocity at  the edges of the wake can be represented by 

(3.30) I (un)+ = NECOSaV(S,oo) = NE.cosaF(S), 

(un)- = N s  cos a V(S ,  - co) = - N s  cos aF(S) ,  

where F(S)  is the function introduced in (3.17) and S = (Ns  cos 



428 W .  W .  Wood 

However, whereas the vertical wake induces a secondary irrotational flow 
solely by virtue of the inflow a t  its edges, the slanted wake induces a secondary 
flow partly by virtue of the inflow at its edges and partly by virtue of the small 
change in pressure that occurs across the wake. So, for the slanted wake, this 
change in pressure also needs to  be specified. The transverse change in pressure 
was considered earlier in order to show that a' - a is small and that the flow 
in the irrotational flow is nearly uniform. We are now preparing for the deter- 
mination of t,he small departures from this uniform flow. From the behaviour of u 
and 8 for the vertical wake, we know how us and 8 behave in the slanted wake in 
each of the three stages of the wake's growth. Thence on devising suitable func- 
tions of S as bases for comparison, we have that in the slanted wake 

(3.31) 
xi (1 + Si) 

1+Sb 
u:= O(I+S%),  €so= O (  ) for all s B  I .  

Thus, on returning to (3.20), we see that the pressure change associated directly 
with the buoyancy of the fluid in the wake is much greater than that associated 
with the curvature of the streamlines, provided that 

da' 
d s  

s- = o(S4/(1 +#a)) for all s $ I. (3.32) 

This condition is clearly satisfied when S is not small, because 

da' 
d s  

s- = O(a'-a) = o(1). 

For the moment, we shall assume that this condition also holds when S is small. 
Then, to  a first approximation, 

2Ap =p(s,h)-p(s ,  - h )  2: ss ina (3.33) 

and, from the expressions (3.2), (3.7), (3.13) and (3.14) for 8, we have 

Ap N N E  sin alOm 7(S, 7) d y  = N s  sin aG(S), (3.34) 

where G(S), like F ( S ) ,  may be represented as a series in St, for small 8, with lead- 
ing term 

G ( O )  = eod7 = ria, (3.35) s.m 
and G(S)  = O(S-k) for large S. The validity of (3.32) for small S will be verified 
later after the angle a' -a between the wake and the incident velocity has been 
determined. 

Before proceeding, it is worth adding that the above discussion is unlikely to 
extend readily to  the case of a downwardly forced draught. To begin with, the 
buoyancy would probably bring the flow to rest at a distance from the cylinder 
of O( ( N s  cos a)-2) and cause reversed flow farther from the cylinder. If this were 
t o  happen, the wake approximation (3.19) might well prove to  be inadequate. 
Further, no similarity solution like (3.14), in which the velocity increases with 
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distance from the cylinder, seems likely to apply. For if, on the one hand, the 
velocity in such a solution were directed towards the cylinder, then large up- 
ward velocities would be assigned to fluid which had not yet reached the source of 
the buoyancy, namely the cylinder. If, on the other hand, the velocity in such a 
solution were directed away from the cylinder, then the fluid involved would be 
required to accelerate downwards, against the action of buoyancy. 

4. The irrotational zone 
We now turn to the secondary flow induced outside the wake by the net influx 

(un)- - (urn)+ = - 2(u,)+ at its two edges and by the change 2Ap in the pressure 
across its width. Outside the diffusive zone, this flow is effectively irrotational 
and is slow relative to um as has already been shown. Accordingly, the total head 
in the irrotational zone must be nearly uniform and the pressure change 2Ap 
must correspond to a change across the wake of - 2Ap in us. Since the wake is thin, 
the velocity at each edge of the wake may be assigned to the irrotational flow on 
the wake line n = 0, so that, for S B (NE)~ ,  

(4.1) I u,(S, 0,) - us(S, 0-) = - 2Ap = - 2Ne sin aG(#), 

Un(X, 0,) -Un(S, 0-) = 2(u,)+ = 2Ne cos aF(8) .  

We see from (4.1) that the secondary irrotational flow has velocities of O(Ne) 
and a length scale of O ( ( N C ) - ~ ) .  In order to determine the irrotational flow ap- 
proximately, the diffusive zone can be treated as a single point because of its 
relatively smaller extent. Moreover, because the wake line is near to the leeward 
axis Ox, as defined in $ 2 for incident velocities that are not necessarily vertically 
upward, the boundary conditions (4.1) can be transferred to Ox. Thence, to a first 
approximation, 

u=GTNesinaG(X), v=a-a’+NecosaF(X) for Y = O _ + ,  ( X >  0) ,  

(4.2) 
where X = ( N ~ c o s ~ ) ~ x ,  Y = ( N E c o s ~ ) ’ ~  (4.3) 

and the mean value Z ( X )  is at present undetermined. The secondary irrotational 
flow can now be represented by a distribution of sinks and vortices along the half 
line Y = 0, X > 0. Hence we find that the secondary irrotational flow is given to a 
first approximation by 

ax’, (4.4) 
cos a - iG(X’) sin a 
X+iY-X‘ 

u-iv = l+n 
N s  sb” F(x’) 

where F(X) and G(X) are determined, as noted in $3, by the flow in the wake. 
The mean of the values of v at Y = & 0 determines the inclination of the wake 

line n = 0 to the incident velocity. Thus, to O(Ne) and for X $ ( N C ) ~ ,  

(4.5) 

In  particular, for 1 B X 9 we have, with the aid of (3.35), that 

a - a’ 2: Ne sin a(log X)/v. (4.6) 
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Thence, X(da’/dX) = o ( X t ) ,  for small X, as was required (in an equivalent form) 
by (3.32) in order to justify taking the pressure difference across the wake to be 
directly due to buoyancy. 

When 2 = X + i Y is large, 

1 +O(NssinaZ-)) (a + 0) ,  

1 + O(Ns2-3) (a = 0 ) .  

More pertinently, when 2 is small, 

NE 
u-iv  = 1 -- eialog (-2) + Nsc+ O(NsZ*) 

= 1 + Nsc - * eia log ( N s  cos a )  

U 

U 

N s  . -- eta log ( - z - iy) + o(Ns)  
B 

NE 
= 1 +u, - iv, - - U etalog ( -z - iy) +o(Ns) ,  

(4.7) 

where 
1 as 

c = 1 ( j  {i[G(s) - G(O)] sin a - [P(s) - F(0)]  cos a} - n o  S +IIm ( i ~ ( s )  sin a - ~ ( s )  cos a} - 

The log2 appears in (4.8) because the influx into the wake and the pressure 
difference across the wake are both initially non-zero (see (3.18), (3.30) and 
(3.35)). Thus the diffusive zone, where x + iy = O( l), is effectively immersed in an 
outer flow, whose complex velocity comprises a uniform contribution 1 + u, - ivo 
together with a contribution varying as log (-x-iy). The effect of this outer 
flow on the convection in the diffusive zone will be dealt with in the next section. 

First, however, let us consider the deflexions of the irrotational velocity and 
of the wake produced by the buoyancy. Prom the first line of (4.8) it is clear that 
the irrotational velocity for very small 2 is less steeply inclined to the horizontal 
than the incident velocity. Likewise, as is shown by (4.61, the wake is initially less 
steeply inclined. These deflexions due to the buoyancy are away from the up- 
ward vertical. Deflexions, due to buoyancy, towards the upward vertical are 
more familiar; so there is seemingly a paradox here which calls for explanation. 
The crux of the matter is that the dynamics of the wake preclude the transverse 
buoyancy force from producing a significant transverse acceleration there. The 
transverse buoyancy force therefore has to be countered by an opposing pres- 
sure gradient, and it is to this counter force that the irrotational flow responds. 
That is to say, in order to counter buoyancy, the pressure p on the upper side 
of the wake has to be greater than on the lower side, and, in consequence, the 
oncoming fluid (in the irrotational zone) is deflected to the lower side of the wake. 
The wake’s initial deflexion a’ - a away from the upward vertical is consistent 
with this trend. 
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5. Velocity at the periphery of the diffusive zone 
It remains to assess the effect of buoyancy on the diffusive zone. When the 

Reynolds number is not small, the buoyancy forces within distances p of O( 1 )  
from the cylinder induce changes in velocity of O(s),  as is clear from (2.1). When 
R is small, the temperature difference 8 is of O(l/logR) (Wood 1968; Hieber & 
Gebhart 1968) a t  distances of O(1) from the cylinder (i.e. in the Oseen zone) and 
the buoyancy forces acting within these distances induce changes in velocity of 
O(e/log R), the corresponding changes due to buoyancy forces acting within 
distances of O(R) from the cylinder (i.e. in the Stokes zone) being relatively 
smaller because of the Stokes zone's relatively smaller width. In  either case, the 
velocities accruing from the buoyancy forces acting a t  distances up to O( 1) from 
the cylinder may be typified as being of O(Ns).  

The velocity in the diffusive zone is not only affected by the local buoyancy. 
It is also affected by the secondary flow created by the wake. Further, the irrota- 
tional secondary flow was found to have velocities which were in the main of 
O(Ns) .  So the indirect effect of the buoyancy in the wake on the flow in the dif- 
fusive zone is likely to be a t  least as important as that of the buoyancy in the 
diffusive zone itself; and, in fact, it proves to be more important, when s is small 
enough. 

To assess the influence of the irrotational flow on the diffusive zone, we con- 
sider the outer part of the diffusive zone, where 1 < p < ( N E ) - ~ ,  and we use the 
Oseen approximation. It is convenient at  this point to designate a particular 
radius p1 as the inner boundary of the peripheral zone. The radius p1 is taken to 
be large but independent of e. Then for p1 < p < ( N E ) - ~ ,  we assume that 

ae 
CT- = v 207 ax 

v.u = 0. 

These equations, of course, admit the isothermal solutions 

I 
where 

m m 
x = e b  x A ,  K n ( p / 2 )  cos nq5, CD = B, logp + I; B n p  cos n$, 

n=O n= 1 

and A,, B, are constants, subject to the conditions 
00 W x A ,  = -C ' /~ IT ,  B, = C A ,  = C'/27~, (5.3) 

n=O n= 0 

imposed by the momentum and continuity integrals. Here C' is a drag coefficient, 
scaled to the appropriate drag in the same way as C was scaled to the drag in 
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(3.5). The drag relevant to C' becomes apparent when the various contributions 
to the velocity in the diffusive zone are pieced together. These solutions are in- 
dependent of the buoyancy forces in the diffusive zone. The uniform part (u,, v,) 
of the buoyancy-induced irrotational velocity has been incorporated in (5.2) in 
anticipation of the matching of the diffusive zone with the irrotational zone. For 
large p, then, u; = u,9i+vOf + O(p-l) ,  save that, where y = O(x:), x > 0,  

u; = uo + x + O(x-1) 

e-iq2 + O(z-1), = a,-- c' 
2(nx)4 (5.4) 

in conformity with the usual asymptotic solution for the wake of a cylinder in a 
uniform stream. 

Our main concern, however, is with the additional velocity and pressure due to 
the buoyancy forces in the diffusive zone. From (5.1) it follows that 

(5 .5 )  

so, using the Oseen equation for 8, we have as a particular solution for p ,  

This solution is valid for p1 < p < (NE)-~  save possibly in the strip IyI 6 pl, 
p > pl, x > 0,  which lies downstream of the inner circle p = p1 and which 
will be called the shadow zone. The solution does not necessarily apply in the 
shadow zone, because for points in the shadow zone the integration in (5.6) 
includes points in the inner part, +R < p < pl,  of the diffusive zone, where 
Oseen's approximation may not apply. Since the width of the wake increases, 
a t  first as xi, the wake is much wider than the shadow zone a t  a distance 
p2, say, from the cylinder, where p: < p2 < (NE)-~. At this stage, the heat lost 
by the wire is carried almost entirely by the wake, so only a relatively small 
proportion of the heat flux from the wire is conveyed across the width of 
the shadow zone (i.e. across the line x =  pz, -p l  < y < pl). Hence almost all the 
heat lost by the wire must cross one or other of the two lines running in the up- 
stream direction from (p2,pl) and (p2, -p l )  to ( - m, pl )  and ( - co, -pl) respec- 

tively. I n  the Oseen approximation, (aO/ay) dx represents the combined heat 

ff ux across the line of integration due to conduction and convection. So the value 
of this integral must change by approximately 27~N as (x, y) is displaced from the 
point (p2 ,p l )  on one side of the shadow zone to the point (p2, - p l )  on the other. 
This confers a change in pb of O(Ne) on crossing the shadow zone a t  x = p2. 
However, pb is O(Ne), with respect to Na. There is no evidence to suggest that p 
can increase with x faster than log x (for x $ 1 )  or that the length scale for signifi- 
cant lateral changes in p can be less than xt (for x $ 1). Hence the change in p 

s1, 
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on crossing the wake at x = p, would be expected to be at most of O(Nelogp,), 
and the change in p on crossing the relatively narrower shadow zone at  x = p2 
would be expected to be at  most of O(Nepl logp,/Jp,), which is much less than the 
change of O(Ne) obtained above. This anomaly is removed by the N logp added 
t o  8 in the integral in (5.6) because of the compensating change of approximately 

- 27r that occurs in the value of a/ay (logp) dx when x, y crosses the shadow 

zone from (p2,pl) to (p,, -pl), andit is for this reason that the secondlogp in (5.6) 
has been included. The reason for including the first logp in (5.6) relates to the 
transverse forces in the shadow zone. From (5.1) and (5.6) we have for the 
points (p,, 

La 
pl) on either side of the shadow zone that 

where ub = (ub, vb) is a particular solution for the buoyancy-induced velocity 
consistent with the particular solution p i  for the buoyancy-induced pressure. 
Both u- 1 and €0 are of O(NE) with respect to Ne, and, as before, there is no 
evidence to suggest that u- I increases faster with x than xi or that either of 
v or 0 increases faster with x than logx, whilst the length scale for transverse 
changes in either u or 0 is unlikely to be smaller for large x than the x4 whichis 
characteristic of the wake. Thus, the difference between the values of the integral 
in (5.7) a t  y = p1 and at  y = -pl, on either side of the shadow zone, can be 
at most O(Nepl(logp2)/,/p2) = ~ ( N e f .  Hence, it is again necessary to annex 
N logp to 8, because, essentially as explained above, the difference between the 

values of ae/aydx for y = p1 and for y = -pl is of ~ ( N E ) .  /I”,, 
After substituting p ;  for p in the momentum equations and exploiting their 

similarity to the heat equation,we obtain, as a particular solution for the buoy- 
ancy-induced velocity, 

where 

vb = e( U, cos a - Ul sin a) ,  J 

(5.9) 
[ = Nehz KO( gp) . J 

The variable [ satisfies agax = v2y, (5.10) 

and has been included in Ul to ensure that U, does not change by O(Ne)  across 

from the source the shadow zone, the net flux of [ (a[/ap - [cos q5)pdq5 

28 FLM 5 5  
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at p = 0 being equal to - 27rN. These formulae again apply in the part of the 
peripheral zone that is outside the shadow zone. 

To round off the specification of the buoyancy-induced velocity we note, from 
(5.1), that 8 can be represented by 

m 

8 = etvx C Cn Kn( Qvp) cos n$, 
n=O 

where the C, are constants restricted, so as to preserve the heat flux by 

m 

C cn = N .  
n=O 

(5.11) 

(5.12) 

Since all the derivatives of 8 may safely be taken to be periodic in 4 for p = pl, 
we may presume that C, K,(rp1/2) = o(n-9) for large n and for any constant q > 0. 
Hence, it may be shown that, for large p, 

8 = e-lO(p)l, 

except that where also y2 = O(x) ,  x > 0, 

which accords with the (linear) wake approximation for x < ( N ~ c o s a ) - ~  given 
previously. 

We can now see that, for large enough p, the buoyancy-induced velocity out- 
side the wake is given by 

(5.13) 

the parts of u6 directly dependent on and 8 being small like e-lo@)1. Thus, buoy- 
ancy in the viscous zone does in fact produce a t  its periphery a logarithmically 
increasing velocity that matches the log ( - x - iy) component obtained in (4.8) 
for the irrotational zone. Since the total change u b  in the velocity due to the 
buoyancy is small throughout the entire diffusive zone, it is governed there by 
linear equations, say 

L [ u b ]  = O ,  (5.14) 

which reduce to (5.1) if R is small. So, we can write 

u b  = u: + u;, (5.15) 

where ug is a particular solution of (5.14) that for large p equals to a first ap- 
proximation the particular solution u6 found above for the outer periphery of the 
diffusive zone and u; is a solution of (5.14) with buoyancy omitted. For large p, 
u; has, to a first approximation, the form of the appropriate peripheral solution 
u;. For definiteness, both ug and u; will be taken to vanish at the cylinder. In 
order to complete the matching of u b  in the diffusive zone with the irrotational 
velocity just outside the diffusive zone, we require that 

(u;, .;I + (uo, .o) as P -2- a. (5.16) 
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Since this limiting velocity is of O(Ne1og (Ne)) ,  the forced convective velocity 
uJ: associated with it will also be of O(Ne1og (NE)) .  The velocity ug due to the 
buoyant forces in the diffusive zone is, however, of O(Ne),  for the reasons given a t  
the beginning of this section. Hence the forced convective velocity U; is domi- 
nant. Consequently, the effect of buoyancy in the diffusive zone, where p = O( l), 
is to a first approximation the same as would result from an increase in the 
velocity at  infinity by an amount 

log (Ne cos a )  eia (5.17) 
2Ne u-tv = -- 
CT 

in the absence of buoyancy. 

6. Summary and discussion 
Apart from the important matter of why the wake is nearly in line with the 

incident velocity, for which the reader is referred to $3, the gist of the argument 
so far is as follows. 

When the buoyancy is slight enough, the change it causes in the velocity is 
small in the diffusive zone and only grows to mainstream magnitude in the wake 
at  a relatively large distance from the diffusive zone. 

The diffusive zone, defined as the zone where p = O(1) and diffusion either 
dominates or balances convection, is thus of the same extent as in the absence of 
buoyancy. The change in velocity in the diffusive zone caused solely by the 
buoyancy force there is readily seen to be of O(Ne) ,  which is taken to be small. 

Where the wake speed is O( 1), the wake widens as x4, x being distance from the 
wire. So, since the wire’s heat loss is almost entirely conveyed through the wake, 
the non-dimensional temperature must decrease as Nx-4. The streamwise buoy- 
ancy-induced acceleration in the wake is therefore of OfNex-*) and, over distances 
of O(x),  causes changes in the streamwise speed of O(Nex:x&). Thus these changes 
in speed in the wake become comparable to the mainstream speed at  distances of 
order ( N C ) - ~  9 1 from the wire. 

Beyond the diffusive zone and outside the wake, the vorticity is negligible and 
the temperature is effectively ambient. But a secondary irrotational motion 
is induced by the wake, in two ways. First, as the fluid in the wake gathers speed, 
it draws fluid from the outside. Second, because the wake fluid is relatively 
light, the dynamic pressure beneath the wake is less than that above the wake. 

The magnitude of the net inflow - 2(un)+ to the wake is closely related to the 
wire’s heat loss, since, with the integrals taken across the wake, 

-2(un)+ = j2 - d n  = 0 (:s/ - us-dn  2 ) = 0 (c:saje6dn) - = O ( Y j ~ 7 4 6 d n )  

= 0(27rNecosa/(CTu,2)). (6.1) 

Thus the inflow is O ( N e )  where u, is O(1). The pressure increase 2Ap across the 
wake is solely due to buoyancy, i.e. 

Ap = sincc &dn,  (6.2) 

28-2 

s 
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because, whilst the longitudinal buoyancy force (O(s8)) balances the longitudinal 
acceleration and viscous force, the transverse buoyancy force (O(s8)) dominates 
its relatively smaller transverse counterparts. So, as above, 

Ap = O(nNcsina/(cru,)) (< 1) (6.3) 

and is O(Ne) where us is O(1). Most importantly, a t  the periphery of the viscous 
zone, where the wake forms, the convection velocity u 21 2, and the order of 
magnitude statements of (6.1) and (6.3) can be replaced by approximate equali- 
ties (on putting us = 1 but leaving au,/as), giving 

(un)+ N - (rNe cos a)/cr, Ap N (rNs sin a)/.-. (6.4) 

To evaluate the irrotational flow approximately, we replace the wake by a line, 
one of its streamlines say, a t  which the changes ZAp in pressure and - 2(u,)+ in 
transverse velocity that occur across the wake are taken to occur discontinu- 
ously. Since Ap and (u,J+ are both small, of O(Ne), we affirm that the secondary 
motion is small and that the wake is only slightly inclined to the mainstream 
velocity fi. The wake speed, and hence also Ap and (u,)+, are therefore, to first 
order, independent of the secondary flow, and they have the longitudinal length 
scale (NE)-~  imposed by the buoyancy. The secondary flow caused by Ap and 
(?A,)+ can be expected to have the same typical length. So, since the width of the 
diffusive zone is much less than (NE)-~, the line on which the discontinuities are 
assigned can be taken, to a first approximation, to extend along the axis Ox 
downstream ofthe wire’s centre, the values of Ap and (un)+ at  the periphery of the 
diffusive zone being taken to apply at x = 0. 

The secondary velocity caused by the discontinuities in p and v of O(Ne) 
along Ox is plainly, overall, of ~ ( N E ) .  But since the discontinuities at  x = 0,  
which may be taken to be given by (6.4), are non-zero, a logarithmic singularity 
occurs. Thus, bearing in mind that the length scale for Ap and (u,)+ is (Ns)-2, we 
have directly that the complex secondary irrotational velocity, calculated with 
the approximations mentioned above, reduces to 

N€ 
u- iv  = - - eia log [ - (x + iy) (NE)~]  + O(Ns)  for x < (NE)-~. (6.5) 0- 

This represents the velocity at  the outer periphery of the diffusive zone and out- 
side the wake. 

Thus, the diffusive zone, because of the secondary flow induced by the wake, is 
effectively embedded in a velocity slightly different from that of the mainstream. 
The largest uniform component of this outer (complex) velocity is 

- 2cr-lNe log ( N e )  eia 

and this produces changes in velocity in the diffusive zone, indirectly due to 
buoyancy, of O(Ne1ogNe). On the other hand, the change in velocity in the 
diffusive zone due to the buoyancy forces in the diffusive zone is of O(Ne), as 
noted above. (Examination of the Oseen equations with buoyancy included, 
which hold in the outer part of the diffusive zone, confirms that the buoyancy 
forces in the diffusive zone give rise to a complex velocity u; - ivg increasing like 
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2Vecr-l log - (z + iy) for large x + iy and, in this way, accounts for the largest non- 
uniform components of the secondary flow just outside the diffusive zone.) 
Hence the dominant effect of buoyancy is independent of the buoyancy forces 
in the diffusive zone and is equivalent to a change of mainstream velocity, with 
buoyancy absent, of amount - 2a-1N~logN~ at an angle 2a to the vertical, i.e. 
t o  a change of - 2cr-1N~10g ( N E )  cos a in the mainstream speed and to a change 
of ha = - 2a-lNe log ( N s )  sina in the angle of the mainstream to the vertical. 
Because the component of along the wake is & cos a the length scale for the de- 
velopment of the buoyancy-induced velocities of O( 1)  is (NE cos a)-2 rather than 
( N E ) - ~ .  It is for this reason that log ( N E  cos a )  appears in most of the statements 
elsewhere in the paper as to the effective change in the mainstream velocity. 
No extra accuracy can be claimed, however, for using log ( N E  cos a) in place of 
log N E ,  inasmuch as the case where cos a is small has been excluded. 

For the application to hot-wire anemometers in air, it is important to note the 
severe restriction on the smallness of N E  for which the assumption made here of 
steady, two-dimensional flow with a uniform velocity at infinity is reliable. The 
region which, through buoyancy, affects a wire's heat loss has been shown to 
have a width of order 

L = v/u,(NE cos a)2 = &/N2g2/32(Tw - Tm)2 v C O S ~  a. (6.6) 

So, as so011 as the flow has significant three-dimensional variations or the ambient 
stream is significantly non-uniform over lengths of this order, the treatment 
given above needs reassessing. If we take, as sample figures, AT = 30"C, 

= 5 x 10-3 cm, v = 0.15 em2 s-1, a = 0 and speeds of 3 and 4 cm s-1, we have 
roughly the results of table 1. 

N N& L 

ua = 3 ern s-l 0.22 0.12 3.6 cm 
u, = 4 cm s-l 0.23 0.053 14 cm 

TABLE 1 

These are appreciable lengths in the context of laboratory experiments. So 
particularly for the smaller values of N e  (say less than 0.05), the prima facie 
possibility exists that buoyancy effects are inseparably tangled with those of 
three-dimensionality due to the wire's supports or with non-uniformity in the 
flow to be measured. 

Another extraneous factor to be reckoned with is the onset of turbulence in the 
wake. The Reynolds number based on wake width and wake velocity is of 
~ O ( ( N E  cosa)-l) at  distances of O ( L )  from the wire, i.e. at  the stage where the velo- 
city induced by buoyancy is of O(u,). If turbulence occurs closer to the wire the 
'change in heat loss due to buoyancy is likely to be appreciably altered but other- 
wise if turbulence is deferred to much further from the wire (i.e. to a distance 
9 L)  the change in heat loss due to buoyancy is likely to be little affected. 
Unfortunately, there appears to be no available experimental or theoretical 
determination for the critical Reynolds number, the nearest relevant evidence 



438 w. w. Wood 

being some measurements for a point source of heat in free convection in which 
the corresponding Reynolds number based on wake width at transition was of 
the order of 102 (Yih 1953). 

R E F E R E N C E S  

COLLIS, D. C. & WILLIAMS, M. J. 1959 J. FZuid Mech. 6 ,  357. 
GEBHART, B. & PERA, L. 1971 J. Fluid Mech. 45, 49. 
HIEBER, C. A. & GEBHART, B. 1968 J. Fluid Mech. 32, 21. 
HIEBER, C. A. & GEBHART, B. 1969 J. Fluid Mech. 38, 137. 
WOOD, W. W. 1968 J. Fluid Mech. 32, 9. 
YIH, C-S. 1953 Fluid models in geophysics. Proc. 1st Symp. on the Use of Models in Geo- 

phyaical Pluid Dynamics, Johns Hopkins (ed. R. R. Long). 


